多元函数的泰勒(Taylor)展开式

算法基础 同时被 3 个专栏收录
3 篇文章 1 订阅
74 篇文章 4 订阅

红色石头的个人网站:redstonewill.com

实际优化问题的目标函数往往比较复杂。为了使问题简化,通常将目标函数在某点附近展开为泰勒(Taylor)多项式来逼近原函数。

  • 一元函数在点 xk x k 处的泰勒展开式为:

    f(x)=f(xk)+(xxk)f(xk)+12!(xxk)2f′′(xk)+on f ( x ) = f ( x k ) + ( x − x k ) f ′ ( x k ) + 1 2 ! ( x − x k ) 2 f ″ ( x k ) + o n

  • 二元函数在点 (xk,yk) ( x k , y k ) 处的泰勒展开式为:

    f(x,y)=f(xk,yk)+(xxk)fx(xk,yk)+(yyk)fy(xk,yk)+12!(xxk)2f′′xx(xk,yk)+12!(xxk)(yyk)f′′xy(xk,yk)+12!(xxk)(yyk)f′′yx(xk,yk)+12!(yyk)2f′′yy(xk,yk)+on f ( x , y ) = f ( x k , y k ) + ( x − x k ) f x ′ ( x k , y k ) + ( y − y k ) f y ′ ( x k , y k ) + 1 2 ! ( x − x k ) 2 f x x ″ ( x k , y k ) + 1 2 ! ( x − x k ) ( y − y k ) f x y ″ ( x k , y k ) + 1 2 ! ( x − x k ) ( y − y k ) f y x ″ ( x k , y k ) + 1 2 ! ( y − y k ) 2 f y y ″ ( x k , y k ) + o n

  • 多元函数(n)在点 xk x k 处的泰勒展开式为:

    f(x1,x2,,xn)=f(x1k,x2k,,xnk)+i=1n(xixik)fxi(x1k,x2k,,xnk)+12!i,j=1n(xixik)(xjxjk)f′′ij(x1k,x2k,,xnk)+on f ( x 1 , x 2 , … , x n ) = f ( x k 1 , x k 2 , … , x k n ) + ∑ i = 1 n ( x i − x k i ) f x i ′ ( x k 1 , x k 2 , … , x k n ) + 1 2 ! ∑ i , j = 1 n ( x i − x k i ) ( x j − x k j ) f i j ″ ( x k 1 , x k 2 , … , x k n ) + o n

  • 把Taylor展开式写成矩阵的形式:

f(x)=f(xk)+[f(xk)]T(xxk)+12![xxk]TH(xk)[xxk]+on f ( x ) = f ( x k ) + [ ∇ f ( x k ) ] T ( x − x k ) + 1 2 ! [ x − x k ] T H ( x k ) [ x − x k ] + o n

其中:

H(xk)=2f(xk)x212f(xk)x2x12f(xk)xnx12f(xk)x1x22f(xk)x222f(xk)xnx22f(xk)x1xn2f(xk)x2xn2f(xk)x2n H ( x k ) = [ ∂ 2 f ( x k ) ∂ x 1 2 ∂ 2 f ( x k ) ∂ x 1 ∂ x 2 ⋯ ∂ 2 f ( x k ) ∂ x 1 ∂ x n ∂ 2 f ( x k ) ∂ x 2 ∂ x 1 ∂ 2 f ( x k ) ∂ x 2 2 ⋯ ∂ 2 f ( x k ) ∂ x 2 ∂ x n ⋮ ⋮ ⋱ ⋮ ∂ 2 f ( x k ) ∂ x n ∂ x 1 ∂ 2 f ( x k ) ∂ x n ∂ x 2 ⋯ ∂ 2 f ( x k ) ∂ x n 2 ]


这里写图片描述

相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值